3.159 \(\int \frac {(a+a \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=121 \[ \frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {16 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-16/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^2*sin(d*x+c)/d/cos(d
*x+c)^(5/2)+4/3*a^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)+16/5*a^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2757, 2636, 2639, 2641} \[ \frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {16 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]

[Out]

(-16*a^2*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sin[c + d*x])/(5*
d*Cos[c + d*x]^(5/2)) + (4*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (16*a^2*Sin[c + d*x])/(5*d*Sqrt[Cos[c
+ d*x]])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^2}{\cos ^{\frac {7}{2}}(c+d x)} \, dx &=\int \left (\frac {a^2}{\cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a^2}{\cos ^{\frac {5}{2}}(c+d x)}+\frac {a^2}{\cos ^{\frac {3}{2}}(c+d x)}\right ) \, dx\\ &=a^2 \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx+a^2 \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\left (2 a^2\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{5} \left (3 a^2\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{3} \left (2 a^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-a^2 \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {16 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} \left (3 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {16 a^2 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.20, size = 487, normalized size = 4.02 \[ \frac {2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \cos (c+d x)+a)^2 \left (\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )}{\sqrt {\tan ^2(c)+1} \sqrt {1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt {\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac {\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt {\tan ^2(c)+1}}+\frac {2 \cos ^2(c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{5 d}-\frac {\csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \cos (c+d x)+a)^2 \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin (c) \left (-\sqrt {\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt {\cot ^2(c)+1}}+\sqrt {\cos (c+d x)} \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \cos (c+d x)+a)^2 \left (\frac {\sec (c) \sin (d x) \sec ^3(c+d x)}{10 d}+\frac {\sec (c) (3 \sin (c)+10 \sin (d x)) \sec ^2(c+d x)}{30 d}+\frac {\sec (c) (5 \sin (c)+12 \sin (d x)) \sec (c+d x)}{15 d}+\frac {4 \csc (c) \sec (c)}{5 d}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Cos[c + d*x])^2/Cos[c + d*x]^(7/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*((4*Csc[c]*Sec[c])/(5*d) + (Sec[c]*Sec[c + d*x]
^3*Sin[d*x])/(10*d) + (Sec[c]*Sec[c + d*x]^2*(3*Sin[c] + 10*Sin[d*x]))/(30*d) + (Sec[c]*Sec[c + d*x]*(5*Sin[c]
 + 12*Sin[d*x]))/(15*d)) - ((a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTa
n[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1
 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2])
+ (2*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + Arc
Tan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcT
an[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTa
n[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 +
Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d)

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [B]  time = 0.82, size = 386, normalized size = 3.19 \[ -\frac {8 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (-\frac {4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}+\frac {17 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{30 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{80 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{12 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x)

[Out]

-8*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-4/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)
/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+17/30*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2
/5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/80*cos(1/2*d*x+1/2*c)
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^3-1/12*cos(1/2*d*x+1/2*c)*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/
2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2/cos(d*x + c)^(7/2), x)

________________________________________________________________________________________

mupad [B]  time = 0.99, size = 114, normalized size = 0.94 \[ \frac {6\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+20\,a^2\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,a^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^2/cos(c + d*x)^(7/2),x)

[Out]

(6*a^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 20*a^2*cos(c + d*x)*sin(c + d*x)*hypergeom(
[-3/4, 1/2], 1/4, cos(c + d*x)^2) + 30*a^2*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x
)^2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2/cos(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________